
www.manaraa.com

A Cost-Effective, High-Bandwidth Storage Architecture 

Garth A. Gibson*, David F. Naglet, Khalil Amirit, Jeff Butler?, Fay W. Chang*, 
Howard Gobioff*, Charles Hardint, Erik Riedelf, David Rochberg*, Jim Zelenka* 

School of Computer Science* 
Department of Electrical and Computer Engineering? 

Carnegie Mellon University, Pittsburgh, PA 15213 
garth+asplos98@cs.cmu.edu 

ABSTRACT 

This paper describes the Network-Attached Secure Disk 
(NASD) storage architecture, prototype implementations oj 
NASD drives, array management for our architecture, and 
three,filesystems built on our prototype. NASD provides scal- 
able storage bandwidth without the cost of servers used 
primarily ,fijr trut&rring data from peripheral networks 
(e.g. SCSI) to client networks (e.g. ethernet). Increasing 
datuset sizes, new attachment technologies, the convergence 
of peripheral and interprocessor switched networks, and the 
increased availability of on-drive transistors motivate and 
enable this new architecture. NASD is based on four main 
principles: direct transfer to clients, secure interfaces via 
cryptographic support, asynchronous non-critical-path 
oversight, and variably-sized data objects. Measurements of 
our prototype system show that these services can be cost- 
#ectively integrated into a next generation disk drive ASK. 
End-to-end measurements of our prototype drive andfilesys- 
terns suggest that NASD cun support conventional distrib- 
uted filesystems without per$ormance degradation. More 
importantly, we show scaluble bandwidth for NASD-special- 
ized filesystems. Using a parallel data mining application, 
NASD drives deliver u linear scaling of 6.2 MB/s per client- 
drive pair, tested with up to eight pairs in our lab. 

Keywords 

D.4.3 File systems management, D.4.7 Distributed systems, 
B.4 Input/Output and Data Communications. 

1. INTRODUCTION 
Demands for storage bandwidth continue to grow due to 
rapidly increasing client performance, richer data types such 
as video, and data-intensive applications such as data 
mining. For storage subsystems to deliver scalable band- 

PermIssIon to make dIgItal or hard copes of all or part of thus work for 
personal or classroom use IS granted without fee prowded that 
copes are not made or dwtributed for profit or commercial advan- 
tage and that copes bear this notuz and the full atat~~n on the f!rsf page. 
70 copy otherwse, to republish, to post on servers or to 
redlstrlbute to IIsts. requres prior specific permission and/or a fee. 
ASPLOS VIII lo/98 CA,USA 
6, 1998 ACM l-58113.107.0/98/0010...$5.00 

width, that is, linearly increasing application bandwidth with 
increasing numbers of storage devices and client processors, 
the data must be striped over many disks and network links 
[Patterson88]. With 1998 technology, most office, engineer- 
ing, and data processing shops have sufficient numbers of 
disks and scalable switched networking, but they access stor- 
age through storage controller and distributed fileserver 
bottlenecks. These bottlenecks arise because a single 
“server” computer receives data from the storage (periph- 
eral) network and forwards it to the client (local area) 
network while adding functions such as concurrency control 
and metadata consistency. A variety of research projects 
have explored techniques for scaling the number of 
machines used to enforce the semantics of such controllers 
or fileservers [Cabrera91, Hartman93, Cao93, Drapeau94, 
Anderson96, Lee96, Thekkath971. As Section 3 shows, scal- 
ing the number of machines devoted to store-and-forward 
copying of data from storage to client networks is expensive. 

This paper makes a case for a new scalable bandwidth stor- 
age architecture, Network-Attached Secure Disks (NASD), 
which separates management and filesystem semantics from 
store-and-forward copying. By evolving the interface for 
commodity storage devices (SCSI-4 perhaps), we eliminate 
the server resources required solely for data movement. As 
with earlier generations of SCSI, the NASD interface is 
simple, efficient and flexible enough to support a wide range 
of filesystem semantics across multiple generations of tech- 
nology. To demonstrate how a NASD architecture can 
deliver scalable bandwidth, we describe a prototype imple- 
mentation of NASD, a storage manager for NASD arrays, 
and a simple parallel filesystem that delivers scalable band- 
width to a parallel data-mining application. Figure 1 illus- 
trates the components of a NASD system and indicates the 
sections describing each. 

We continue in Section 2 with a discussion of storage system 
architectures and related research. Section 3 presents 
enabling technologies for NASD. Section 4 presents an over- 
view of our NASD interface, its implementation and perfor- 
mance. Section 5 discusses ports of NFS and AFS 
filesystems to a NASD-based system, our implementation of 
a NASD array management system, a simple parallel filesys- 
tern, and an I/O-intensive data mining application that 
exploits the bandwidth of our prototype. This section reports 
the scalability of our prototype compared to the performance 
of a fast single NFS server. Section 6 discusses active disks, 
the logical extension of NASD to execute application code. 
Section 7 concludes with a discussion of ongoing research. 

92 



www.manaraa.com

Section 5.2 

File Manager 
Storage Manager 

1 Net Protocol 1 Conmller !, 

i, 

, ,,,I, 
-- Yl Net Hardware 

Access Control F 
SD 

/ 
managemenr 

Client 

i 

T‘ _“.. I 

Switch 

Section 5. I ;D NASD NASD NASD NAI 

Figure 1: An overview of a scalable bandwidth NASD system. The major components are annotated with the layering of their logical 
components. The innermost box shows a basic NASD drive as described in Section 4. The larger box contains the essentials for a 
NASD-based filesystem, which adds a file manager and client as detailed in Section 5.1. Finally, the outer box adds a storage manager 
to coordinate drives on which parallel filesystem is built as discussed in Section 5.2. 

2. BACKGROUND AND RELATED WORK 
Figure 2 illustrates the principal alternative storage architec- 
tures: (1) a local filesystem, (2) a distributed filesystem 
(DFS) built directly on disks, (3) a distributed filesystem 
built on a storage subsystem, (4) a network-DMA distrib- 
uted filesystem, (5) a distributed filesystem using smart 
object-based disks (NASD) and (6) a distributed filesystem 
using a second level of objects for storage management. 

The simplest organization (1) aggregates the application, 
file management (naming, directories, access control, con- 
currency control) and low-level storage management. Disk 
data makes one trip over a simple peripheral area network 
such as SCSI or Fibrechannel and disks offer a fixed-size 
block abstraction. Stand-alone computer systems use this 
widely understood organization. 

To share data more effectively among many computers, an 
intermediate server machine is introduced (2). If the server 
offers a simple file access interface to clients, the organiza- 
tion is known as a distributed filesystem. If the server pro- 
cesses data on behalf of the clients, this organization is a 
distributed database. In organization (2), data makes a sec- 
ond network trip to the client and the server machine can 
become a bottleneck, particularly since it usually serves 
large numbers of disks to better amortize its cost. 

The limitations of using a single central fileserver are 
widely recognized. Companies such as Auspex and Net- 
work Appliance have attempted to improve file server per- 
formance, specifically the number of clients supported, 
through the use of special purpose server hardware and 
highly optimized software [Hitz90, Hitz94]. Although not 

the topic of this paper, the NASD architecture can improve 
the client-load-bearing capability of traditional filesystems 
by off-loading simple data-intensive processing to NASD 
drives [Gibson97a]. 

To transparently improve storage bandwidth and reliability 
many systems interpose another computer, such as a RAID 
controller [Patterson88]. This organization (3) adds another 
peripheral network transfer and store-and-forward stage for 
data to traverse. 

Provided that the distributed filesystem is reorganized to 
logically “DMA” data rather than copy it through its server, 
a fourth organization (4) reduces the number of network 
transits for data to two. This organization has been exam- 
ined extensively [Drapeau94, Long941 and is in use in the 
HPSS implementation of the Mass Storage Reference 
Model [Watson95, Miller881. Organization (4) also applies 
to systems where clients are trusted to maintain filesystem 
metadata integrity and implement disk striping and redun- 
dancy [Hartman93, Anderson961. In this case, client cach- 
ing of metadata can reduce the number of network transfers 
for control messages and data to two. Moreover, disks can 
be attached to client machines which are presumed to be 
independently paid for and generally idle. This eliminates 
additional store-and-forward cost, if clients are idle, without 
eliminating the copy itself. 

As described in Section 4, the NASD architecture (5) 
embeds the disk management functions into the device and 
offers a variable-length object storage interface. In this 
organization, file managers enable repeated client accesses 
to specific storage objects by granting a cachable capability. 

93 



www.manaraa.com

1. Local filesystem. 

application : file manager ’ object store ’ disk 
computers in 
datakontn~l 

b.. 

path 

2 

2. Distributed FS. 

3. Distributed FS 
with RAID controller 

4. DMA-based DFS. 

L&N 

LAN 

PAN 

5. NASD - based DFS. SAN I SAN 

read, write 

6. NASD-Cheops-based DFS. 1 

Figure 2: Evolution of storage architectures for untrusted networks and clients. Boxes are computers, horizontal lines are 
communication paths and vertical lines are internal and external interfaces. LAN is a local area network such as Ethernet or FDDI. 
PAN is a peripheral area network such as SCSI, Fibrechannel or IBM’s ESCON. SAN is an emerging system area network such as 
ServerNet, Myrinet or perhaps Fibrechannel or Ethernet that is common across clients, servers and devices. On the far right, a disk is 
capable of functions such as seek, read, write, readahead, and simple caching. The object store binds blocks into variable-length 
objects and manages the layout of these objects in the storage space offered by the device(s). The file nanager provides naming, 
directory hierarchies, consistency, access control, and concurrency control. In NASD, storage management is done by recursion on 
the object interface on the SAN. 

Hence, all data and most control travels across the network 
once and there is no expensive store-and-forward computer. 

The idea of a simple, disk-like network-attached storage 
server as a building block for high-level distributed filesys- 
terns has been around for a long time. Cambridge’s Univer- 
sal File Server (UFS) used an abstraction similar to NASD 
along with a directory-like index structure [Birrell80]. The 
UFS would reclaim any space that was not reachable from a 
root index. The successor project at Cambridge, CFS, also 
performed automatic reclamation and added undoable (for a 
period of time after initiation) transactions into the filesys- 
tern interface [Mitchell81]. To minimize coupling of file 
manager and device implementations, NASD offers less 
powerful semantics, with no automatic reclamation or trans- 
action rollback. 

Using an object interface in storage rather than a fixed- 
block interface moves data layout management to the disk. 
In addition, NASD partitions are variable-sized groupings 
of objects, not physical regions of disk media, enabling the 
total partition space to be managed easily, in a manner simi- 
lar to virtual volumes or virtual disks [IEEE9.5, Lee96]. We 
also believe that specific implementations can exploit 
NASD’s uninterpreted filesystem-specific attribute fields to 
respond to higher-level capacity planning and reservation 
systems such as HP’s attribute-managed storage 
[Golding95]. Object-based storage is also being pursued for 
quality-of-service at the device, transparent performance 
optimizations, and drive supported data sharing 
[Anderson98a]. 

ISI’s Netstation project IVanMeter proposes a form of 

object-based storage called Derived Virtual Devices (DVD) 
in which the state of an open network connection is aug- 
mented with access control policies and object metadata, 
provided by the file manager using Kerberos [Neuman94] 
for underlying security guarantees. This is similar to 
NASD’s mechanism except that NASD’s access control pol- 
icies are embedded in unforgeable capabilities separate from 
communication state, so that their interpretation persists (as 
objects) when a connection is terminated. Moreover, Netsta- 
tion’s use of DVD as a physical partition server in VISA 
[VanMeter is not similar to our use of NASD as a single- 
object server in a parallel distributed filesystem. 

In contrast to the IS1 approach, NASD security is based on 
capabilities, a well-established concept for regulating access 
to resources [Dennis66]. In the past, many systems have 
used capabilities that rely on hardware support or trusted 
operating system kernels to protect system integrity 
[Wulf74, Wilkes79, Karger881. Within NASD, we make no 
assumptions about the integrity of the client to properly 
maintain capabilities. Therefore, we utilize cryptographic 
techniques similar to ISCAP [Gong891 and Amoeba 
[Tanenbaum86]. In these systems, both the entity issuing a 
capability and the entity validating a capability must share a 
large amount of private information about all of the issued 
capabilities. These systems are generally implemented as 
single entities issuing and validating capabilities, while in 
NASD these functions are done in distinct machines and no 
per-capability state is exchanged between issuer and valida- 
tor. 

To offer disk striping and redundancy for NASD, we layer 
the NASD interface. In this organization (6), a storage man- 

94 



www.manaraa.com

ager replaces the file manager’s capability with a set of 
capabilities for the objects that actually make up the high- 
level striped object. This costs an additional control mes- 
sage but once equipped with these capabilities, clients again 
access storage objects directly. Redundancy and striping are 
done within the objects accessible with the client’s set of 
capabilities, not the physical disk addresses. 

Our storage management system, Cheops, differs from other 
storage subsystems with scalable processing power such as 
Swift, TickerTAIP and Petal [Long94, Cao93, Lee961 in that 
Cheops uses client processing power rather than scaling the 
computational power of the storage subsystem. Cheops is 
similar to the Zebra and xFS filesystems except that client 
trust is not required because the client manipulates only 
objects it can access [ Hartman93, Anderson961. 

3. ENABLING TECHNOLOGY 
Storage architecture is ready to change as a result of the syn- 
ergy between five overriding factors: l/O bound applica- 
tions, new drive attachment technologies, an excess of on- 
drive transistors, the convergence of peripheral and inter- 
processor switched networks, and the cost of storage sys- 
tems. 

I/O-bound applications: Traditional distributed filesystem 
workloads are dominated by small random accesses to small 
files whose sizes are growing with time, though not dramat- 
ically [Baker91, TPC98]. In contrast, new workloads are 
much more I/O-bound, including data types such as video 
and audio, and applications such as data mining of retail 
transactions, medical records, or telecommunication call 

(a) Current Trident ASIC (74 mm2 at 0.68 micron) 

records. 

New drive attachment technology: The same technology 
improvements that are increasing disk density by 60% per 
year are also driving up disk bandwidth at 40% per year 
[Grochowski96]. High transfer rates have increased pres- 
sure on the physical and electrical design of drive busses, 
dramatically reducing maximum bus length. At the same 
time, people are building systems of clustered computers 
with shared storage. For these reasons, the storage industry 
is moving toward encapsulating drive communication over 
Fibrechannel [Benner96], a serial, switched, packet-based 
peripheral network that supports long cable lengths, more 
ports, and more bandwidth. One impact of NASD is to 
evolve the SCSI command set that is currently being encap- 
sulated over Fibrechannel to take full advantage of the 
promises of that switched-network technology for both 
higher bandwidth and increased flexibility. 

Excess of’ on-drive transistors: The increasing transistor 
density in inexpensive ASIC technology has allowed disk 
drive designers to lower cost and increase performance by 
integrating sophisticated special-purpose functional units 
into a small number of chips. Figure 3 shows the block dia- 
gram for the ASIC at the heart of Quantum’s Trident drive. 
When drive ASIC technology advances from 0.68 micron 
CMOS to 0.35 micron CMOS, they could insert a 200 MHz 
StrongARM microcontroller, leaving 100,000 gate-equiva- 
lent space for functions such as onchip DRAM or crypto- 
graphic support. While this may seem like a major jump, 
Siemen’s TriCore integrated microcontroller and ASIC 
architecture promises to deliver a 100 MHz, 3-way issue, 

(b) Next-generation ASIC (0.35 micron technology) 

insert.35 micron StrongArm RISC pP 

fits in 27 mm2 with 8K+8K cache 

at 200 MHz, 230 Dhrystone MIPS 

Figure 3: Quantum’s Trident disk drive features the ASK on the left (a). Integrated onto this chip in four independent clock domains are 
10 function units with a total of about 110,000 logic gates and a 3 KB SRAM: a disk formatter, a SCSI controller, ECC detection, ECC 
correction, spindle motor control, a servo signal processor and its SRAM, a servo data formatter (spoke), a DRAM controller, and a 
microprocessor port connected to a Motorola 68000 class processor. By advancing to the next higher ASIC density, this same die area 
could also accommodate a 200 MHz StrongARM microcontroller and still have space left over for DRAM or additional functional units 
such as cryptographic or network accelerators. 

95 



www.manaraa.com

133 MB/s I 532 MB/s 

10 MB/s1 18MBls 
Seagate 

Medallist / Cheetah 

Figure 4: Cost model for the traditional server architecture. In 
this simple model, a machine serves a set of disks to clients 
using a set of disk (wide Ultra and Ultra2 SCSI) and network 
(Fast and Gigabit Ethernet) interfaces. Using peak bandwidths 
and neglecting host CPU and memory bottlenecks, we 
estimate the server cost overhead at maximum bandwidth as 
the sum of the machine cost and the costs of sufficient 
numbers of interfaces to transfer the disks’ aggregate 
bandwidth divided by the total cost of the disks. While the 
prices are probably already out of date, the basic problem of a 
high server overhead is likely to remain. We report pairs of 
costs and bandwidth estimates. On the left, we show values 
for a low cost system built from high-volume components. On 
the right, we show values for a high-performance reliable 
system built from components recommended for mid-range 
and enterprise servers [Pricewatch98]. 

32-bit datapath with up to 2 MB of onchip DRAM and cus- 
tomer defined logic in 1998 [TriCore97]. 

Convergence of peripheral and interprocessor networks: 
Scalable computing is increasingly based on clusters of 
workstations. In contrast to the special-purpose, highly reli- 
able, low-latency interconnects of massively parallel pro- 
cessors such as the SP2, Paragon, and Cosmic Cube, 
clusters typically use Internet protocols over commodity 
LAN routers and switches. To make clusters effective, low- 
latency network protocols and user-level access to network 
adapters have been proposed, and a new adapter card inter- 
face, the Virtual Interface Architecture, is being standard- 
ized [Maeda93, Wilkes92, Boden95, Horst95, vonEicken95, 
lntel971. These developments continue to narrow the gap 
between the channel properties of peripheral interconnects 
and the network properties of client interconnects [Sachs941 
and make Fibrechannel and Gigabit Ethernet look more 
alike than different 

Cost-ineffective storage servers: In high performance dis- 
tributed filesystems, there is a high cost overhead associated 
with the server machine that manages filesystem semantics 
and bridges traffic between the storage network and the cli- 
ent network [Anderson96]. Figure 4 illustrates this problem 
for bandwidth-intensive applications in terms of maximum 
storage bandwidth. Based on these cost and peak perfor- 
mance estimates, we can compare the expected overhead 
cost of a storage server as a fraction of the raw storage cost. 
Servers built from high-end components have an overhead 
that starts at 1,300% for one server-attached disk! Assuming 
dual 64-bit PC1 busses that deliver every byte into and out 
of memory once, the high-end server saturates with 14 
disks, 2 network interfaces, and 4 disk interfaces with a 
115% overhead cost. The low cost server is more cost effec- 
tive. One disk suffers a 380% cost overhead and, with a 32- 
bit PC1 bus limit, a six disk system still suffers an 80% cost 
overhead. 

While we can not accurately anticipate the marginal 
increase in the cost of a NASD over current disks, we esti- 
mate that the disk industry would be happy to charge 10% 
more. This bound would mean a reduction in server over- 

head costs of at least a factor of 10 and in total storage sys- 
tem cost (neglecting the network infrastructure) of over 
50%. 

4. NETWORK-ATTACHED SECURE DISKS 
Network-Attached Secure Disks (NASD) enable cost-effec- 
tive bandwidth scaling. NASD eliminates the server band- 
width bottleneck by modifying storage devices to transfer 
data directly to clients and also repartitions traditional file 
server or database functionality between the drive, client 
and server as shown in Figure I. NASD presents a flat name 
space of variable-length objects that is both simple enough 
to be implemented efficiently yet flexible enough for a wide 
variety of applications. Because the highest levels of distrib- 
uted filesystem functionality-global naming, access con- 
trol, concurrency control, and cache coherency-vary 
significantly, we do not advocate that storage devices sub- 
sume the file server entirely. Instead, the residual filesystem, 
thefile manager, should define and manage these high-level 
policies while NASD devices should implement simple 
storage primitives efficiently and operate as independently 
of the file manager as possible. 

Broadly, we define NASD to be storage that exhibits the fol- 
lowing four properties: 

Direct transfer: Data is transferred between drive and cli- 
ent without indirection or store-and-forward through a file 
server machine. 

Asynchronous oversight: We define asynchronous over- 
sight as the ability of the client to perform most operations 
without synchronous appeal to the file manager. Frequently 
consulted but infrequently changed policy decisions, such as 
authorization decisions, should be encoded into capabilities 
by the file manager and subsequently enforced by drives. 

Cryptographic integrity: By attaching storage to the net- 
work, we open drives to direct attack from adversaries. Thus, 
it is necessary to apply cryptographic techniques to defend 
against potential attacks. Drives ensure that comm,ands and 
data have not been tampered with by generating and verifying 
cryptographic keyed digests. This is essentially the same 
requirement for security as proposed for IPv6 [Deering95]. 

96 



www.manaraa.com

Object-based interface: To allow drives direct knowledge 
of the relationships between disk blocks and to minimize 
security overhead, drives export variable length “objects” 
instead of fixed-size blocks. This also improves opportuni- 
ties for storage self-management by extending into a disk an 
understanding of the relationships between blocks on the 
disk [Anderson98a]. 

4.1 NASD Interface 
For the experiments presented in this paper, we have con- 
structed a simple, capability-based, object-store interface 
(documented separately [Gibson97b]). This interface con- 
tains less than 20 requests including: read and write object 
data; read and write object attributes; create and remove 
object; create, resize, and remove partition; construct a 
copy-on-write object version; and set security key. Figure 5 
diagrams the components of a NASD request and illustrates 
the layering of networking and security. 

Based loosely on the inode interface of a UNIX 
filesystem [McKusick84], our interface provides soft parti- 
tions, control objects, and per-object attributes for prealloca- 
tion, clustering, and capability revocation. Resizeable 
partitions allow capacity quotas to be managed by a drive 
administrator. Objects with well-known names and struc- 
tures allow configuration and bootstrap of drives and parti- 
tions. They also enable filesystems to find a fixed starting 
point for an object hierarchy and a complete list of allocated 
object names. Object attributes provide timestamps, size, 
and allow capacity to be reserved and objects to be linked 
for clustering [deJonge93]. A logical version number on the 
object may be changed by a filesystem to immediately 
revoke a capability (either temporarily or permanently). 
Finally, an uninterpreted block of attribute space is available 
to the file manager to record its own long-term, per-object 
state such as filesystem access control lists or mode bits. 

NASD security is based on cryptographic capabilities which 
are documented in an earlier publication [Gobioff97]. Capa- 
bilities are protected by a small number of keys organized 
into a four-level hierarchy. The primary use of the keys is to 
manage the key hierarchy and construct capabilities for use 
by clients. Clients obtain capabilities from a file manager 
using a secure and private protocol external to NASD. A 

Includes approved logical ver- 

‘Protects against replayed and 
lrj \delay ed requests 

Figure 5: Packet diagram of the major components of a NASD 
request in our current prototype. The details of NASD objects, 
requests, and security are documented in separate papers 
[Gibson97b, Gobioft971. 

capability contains a public and a private portion. The pub- 
lic portion is a description of what rights are being granted 
for which object. The private portion is a cryptographic key 
generated via a keyed message digest [Bellare96] from the 
public portion and drive’s secret keys. A drive verifies a cli- 
ent’s right to perform an operation by confirming that the 
client holds the private portion of an appropriate capability. 
The client sends the public portion along with each request 
and generates a second digest of the request parameters 
keyed by the private field. Because the drive knows its keys, 
receives the public fields of a capability with each request, 
and knows the current version number of the object, it can 
compute the client’s private field (which the client cannot 
compute on its own because only the file manager has the 
appropriate drive secret keys). If any field has been 
changed, including the object version number, the access 
fails and the client is sent back to the file manager. 

These mechanisms ensure the integrity of requests in the 
presence of both attacks and simple accidents. Protecting 
the integrity and/or privacy of the data involves crypto- 
graphic operations on all the data which is potentially very 
expensive. Software implementations operating at disk rates 
are not available with the computational resources we 
expect on a disk, but schemes based on multiple DES func- 
tion blocks in hardware can be implemented in a few tens of 
thousands of gates and operate faster than disk data 
rates [Verbauwhede87, Knudsen961. For the measurements 
reported in this paper, we disabled these security protocols 
because our prototype does not currently support such hard- 
ware. 

4.2 Prototype Implementation 
We have implemented a working prototype of the NASD 
drive software running as a kernel module in Digital UNIX. 
Each NASD prototype drive runs on a 
DEC Alpha 3000/400 (133 MHz, 64 MB, 
Digital UNIX 3.2g) with two Seagate ST52160 Medallist 
disks attached by two 5 MB/s SCSI busses. While this is 
certainly a bulky “drive”, the performance of this five year 
old machine is similar to what we predict will be available 
in drive controllers soon. We use two physical drives man- 
aged by a software striping driver to approximate the 
10 MB/s rates we expect from more modem drives. 

Because our prototype code is intended to operate directly 
in a drive, our NASD object system implements its own 
internal object access, cache, and disk space management 
modules (a total of 16,000 lines of code) and interacts mini- 
mally with Digital UNIX. For communications, our proto- 
type uses DCE RPC 1.0.3 over UDP/IP. The implementation 
of these networking services is quite heavyweight. The 
appropriate protocol suite and implementation is currently 
an issue of active research [Anderson98b, Anderson98c 
VanMeter 

Figure 6 shows the disks’ baseline sequential access band- 
width as a function of request size, labeled raw read and 
write. This test measures the latency of each request. 
Because these drives have write-behind caching enabled, a 

97 



www.manaraa.com

write’s actual completion time is not measured accurately, 
resulting in a write throughput (-7 MB/s) that appears to 
exceed the read throughput (-5 MB/s). To evaluate object 
access performance, we modified the prototype to serve 
NASD requests from a user-level process on the same 
machine (without the use of RPC) and compared that to the 
performance of the local filesystem (a variant of Berkeley’s 
FFS [McKusick84]). Figure 6 shows apparent throughput as 
a function of request size with NASD and FFS being 
roughly comparable. Aside from FFS’s strange write-behind 
implementation, the principle differences are that NASD is 
better tuned for disk access (-5 MB/s versus -2.5 MB/s on 
reads that miss in the cache), while FFS is better tuned for 
cache accesses (fewer copies give it -48 MB/s versus 
-40 MB/s on reads that hit in the memory cache). 

4.3 Scalability 
Figure 7 demonstrates the bandwidth scalability of our 
NASD prototype satisfying requests from cache. In this 
experiment there are 13 NASD drives, each linked by OC-3 
ATM to 10 client machines, each a DEC AlphaStation 255 
(233 MHz, 128 MB, Digital UNIX 3.2g). Each client issues 
a series of sequential 2 MB read requests striped across four 
NASDs. From Figure 6, we know that each NASD can 
deliver 32 MB/s from its cache to the RPC protocol stack. 
However, DCE RPC cannot push more than 80 Mb/s 
through a 155 Mb/s ATM link before the receiving client 
saturates. While commodity NASD drives must have a less 
costly RPC mechanism, this test does show a simple access 
pattern for which a NASD array can deliver scalable aggre- 
gate bandwidth. 

4.4 Computational Requirements 
Using our prototype drive software as a baseline, we can 
estimate the computational power needed in a drive micro- 
controller to support the basic NASD functions. We used the 
ATOM code annotation tool [Srivastava94] and the Alpha 

(a) 560 

128 256 384 512 
Request Size (KB) 

70 al 
60 9 

2 
50 0 

40 j 

30 a” 

-Average client idle i 10 

2 3 4 5 6 7 8 9 10 
0 

# of Clients 

Figure 7: Prototype NASD cache read bandwidth. Read 
bandwidth obtained by clients accessing a single large cached 
file striped over 13 NASD drives with a stripe unit of 512 KB. 
As shown by the client idle values, the limiting factor is the CPU 
power of the clients within this range. 

on-chip counters to measure the code paths of read and 
write operations. These measurements are reported in the 
Total Instructions columns of Table 1. For the one byte 
requests, our measurements with DCPI [Anderson971 also 
show that the prototype consumes 2.2 cycles per instruction 
(CPI). There are many reasons why using these numbers to 
predict drive performance is approximate. Our prototype 
uses an Alpha processor (which has different CPI properties 
than an embedded processor), our estimates neglect poorer 
CPI during copying (which would have hardware assist in a 
real drive), and our communications implementation is 
more expensive than we believe to be appropriate in a drive 
protocol stack. However, these numbers are still useful for 
broadly addressing the question of implementing NASD in 
a drive ASIC. 

Table 1 shows that a 200 MHz version of our prototype 

(b) I I 
56 - FFS write 

HNASD write 
40 HFFS write miss 

A 

-NASD write miss 
40 : -Raw write 

120 256 384 512 
Request Size (KB) 

Figure 6: NASD prototype bandwidth comparing NASD, the local filesystem (FFS) and the raw device during sequential reads (a) and 
writes (b). The raw device stripes data in 32 KB units over two disks each on a separate 5 MB/s SCSI bus. Response timing is done by a 
user-level process issuing a single request for the specified amount of data. Raw disk readahead is effective for requests smaller than 
about 128 KB. In the “miss” cases, not even metadata is cached. For cached accesses, FFS benefits from doing one less data copy than 
does the NASD code. Both exhibit degradation as the processor’s L2 cache (5 12 KB) overflows, though NASD’s extra copy makes this 
more severe. The strange write performance of FFS occurs because it acknowledges immediately for writes of up to 64 KB (write- 
behind), and otherwise waits for disk media to be updated. In this test, NASD has write-behind (fully) enabled as do the disks. 

98 



www.manaraa.com

Operation Total Instructions / % Communications 
Operation time (msec) 

(@ 200 MHz, CPI = 2.2) 

Request Size IB 

read - cold cache 46k 70 

read - warm cache 38k 92 

write cold cache 43k 73 

write warm cache 37k 92 

8KB 

67k 79 

57k 94 

71k 82 

57k 94 

64 KB 512 KB 1B 8KB 64 KB 512KB 

247k 90 1,488k 92 0.5 1 0.74 2.7 16.4 

224k 91 1,410k 97 0.42 0.63 2.5 15.6 

269k 92 1,947k 96 0.47 0.78 3.0 21.3 

253k 97 1,871k 97 0.4 1 0.64 2.8 20.4 

Table 1: Measured cost and estimated performance of read and write requests. The instruction counts and distribution were obtained by 
instrumenting our prototype with ATOM and using the Alpha on-chip counters. The values shown are the total number of instructions 
required to service a particular request size and include all communications (DCE RPC, UDP/IP) and NASD code including kernel work 
done on their behalf. The measured number of cycles per instruction (CPI) for l-byte requests was 2.2 (for larger requests our processor 
copying implementation suffers significantly while real disks have substantial hardware assistance as shown in Figure 3). The second set 
of columns use these instruction counts to estimate the duration of each operation on a 200 MHz processor, assuming a CPI of 2.2 for all 
instructions (including copying and communications instructions). For comparison purposes, we experimented with a Seagate Barracuda 
(ST 34371W). This drive is able to read the next sequential sector from its cache in 0.30 msec and read a random single sector from the 
media in 9.4 msec. With 64 KB requests, it reads from cache in 2.2 msec and from the media, at a random location, in 11. I msec. 
“Write - warm cache” means that the needed metadata is in the cache before the operation starts. 

should take 0.4-0.5 msecs for a small request, 70-90% of 
which is spent in the communications codepath. For 64 KB 
requests, we estimate 253.0 msec would be used with 90- 
97% of the work in communications. For comparison, we 
examined a Seagate Barracuda drive executing sequential 
reads. Because this is the most important operation for cur- 
rent drives, a large fraction of each operation is directly han- 
dled in hardware. For single sector reads the Barracuda 
takes only 0.3 msecs and for 64 KB reads it takes only 
2.2 msecs. 

We conclude that NASD control is not necessarily too 
expensive but that workstation-class implementations of 
communications certainly are [VanMeter98]. 

5. FILESYSTEMS FOR NASD 
As shown in the previous section, NASD drives attached to 
clients by a high-bandwidth switched network are capable 
of scalable aggregate bandwidth. However, most client 
applications do not access data directly - they access data 
through higher-level distributed filesystems. To demonstrate 
the feasibility of NASD, we have ported two popular dis- 
tributed filesystems, NFS and AFS [Sandberg85, 
Howard881, to our NASD environment. We have also 
implemented a minima1 distri.buted filesystem structure that 
passes the scalable bandwidth of network-attached storage 
on to applications. 

Scalability in file managers has traditionally meant increas- 
ing the number of clients supported as the total amount of 
storage is increased. This topic is outside the scope of this 
paper and has been addressed elsewhere [Howard88, 
Anderson96, Gibson97a, Thekkath971. To scale achievable 
bandwidth with increasing storage capacity, however, 
requires more than simply attaching storage to the network. 
For example, even if the application issues sufficiently large 
requests, NFS and AFS break these requests into small 

transfer units and limit the number of requests that are con- 
currently issued to storage. 

Pragmatically, a new class of disk devices that requires high 
sales volumes for cost effectiveness and new filesystems for 
effective performance will likely fail unless there is a strat- 
egy for evolving existing systems to the new architecture. If 
NASD drives can be used in traditional distributed filesys- 
terns without penalty, then customers must be moved to new 
NASD-optimized filesystems only when bandwidth is the 
primary concern. 

5.1 NFS and AFS in a NASD environment 
In a NASD-adapted filesystem, files and directories are 
stored in NASD objects. The mapping of files and directo- 
ries to objects depends upon the filesystem. For our NFS 
and AFS ports, we use a simple approach: each file and each 
directory occupies exactly one NASD object, and offsets in 
files are the same as offsets in objects. This allows common 
file attributes (e.g. file length and last modify time) to corre- 
spond directly to NASD-maintained object attributes. The 
remainder of the file attributes (e.g. owner and mode bits) 
are stored in the object’s uninterpreted attributes. Because 
the filesystem makes policy decisions based on these file 
attributes, the client may not directly modify object meta- 
data; commands that may impact policy decisions such as 
quota or access rights must go through the file manager. 

The combination of a stateless server, weak cache consis- 
tency, and few filesystem management mechanisms make 
porting NFS to a NASD environment straightforward. Data- 
moving operations (read, write) and attribute reads 
(getattr) are directed to the NASD drive while all other 
requests are handled by the file manager. Capabilities are 
piggybacked on the file manager’s response to lookup 
operations. File attributes are either computed from NASD 
object attributes (e.g. modify times and object size) or 
stored in the uninterpreted filesystem-specific attribute (e.g. 

99 



www.manaraa.com

File Manager 
Storage Manager 

Object 0 = (0.1.0.2.0.3.0.4) 
Object 0 

Redundancy 

Net Protocol 

Net Hardware 

Object 0.1 Object 0.2 Object 0.3 Object 0.4 

’ - \ ,ccess 
NASD 

L 

t 

Figure 8: A NASD-optimized parallel filesystem. NASD PFS is used in conjunction with MPI for parallel applications in a cluster of 
workstations. The filesystem manages objects which are not directly backed by data. Instead, they are backed by a storage manager, 
Cheops, which redirects clients to the underlying component NASD objects. Our parallel filesystem extends a simple Unix tilesystem 
interface with the SIO low-level interface [Corbett96] and inherits a name service, directory hierarchy, and access controls from the 
filesystem. 

mode and uid/gid). level threads package. Our primary goal was to demonstrate 
that simple modifications to existing tilesystems allow 
NASD devices to be used without performance loss. Using 
the Andrew benchmark [Howard881 as a basis for compari- 
son, we found that NASD-NFS and NFS had benchmark 
times within 5% of each other for configurations with 
1 drive/l client and 8 drives/8 clients [Gibson97b]. We do 
not report AFS numbers because the AFS server’s severe 
concurrency limitations would make a comparison unfair. 

AFS is a more complex distributed filesystem personality, 
but is also readily mapped to a NASD environment. As with 
NFS, data-moving requests (FetchData, StoreData) 
and attribute reads (FetchStatus, BulkStatus) are 
directed to NASD drives, while all other requests are sent to 
the file manager. Because AFS clients perform lookup oper- 
ations by parsing directory files locally, there was no obvi- 
ous operation on which to piggyback the issuing of 
capabilities so AFS RPCs were added to obtain and relin- 
quish capabilities explicitly. AFS’s sequential conistency is 
provided by breaking callbacks (notifying holders of poten- 
tially stale copies) when a write capability is issued. With 
NASD, the file manager no longer knows that a write opera- 
tion arrived at a drive so must inform clients as soon as a 
write may occur. The issuing of new callbacks on a file with 
an outstanding write capability are blocked. Expiration 
times set by the file manager in every capability and the 
ability to directly invalidate capabilities allows file manag- 
ers to bound the waiting time for a callback. 

AFS also requires enforcement of a per-volume quota on 
allocated disk space. This is more difficult in NASD 
because quotas are logically managed by the file manager 
on each write but the file manager is not accessed on each 
write. However, because NASD has a byte range restriction 
in its capabilities, the file manager can create a write capa- 
bility that escrows space for the file to grow by selecting a 
byte range larger than the current object. After the capability 
has been relinquished to the file manager (or has expired), 
the file manager can examine the object to determine its 
new size and update the quota data structures appropriately. 

Both the NFS and AFS ports were straightforward. Specifi- 
cally, transfers remain quite small, directory parsing in NFS 
is still done by the server, and the AFS server still has a con- 
currency limitations caused by its coroutine-based user- 

5.2 A Parallel Filesystem for NASD Clusters 
To fully exploit the potential bandwidth in a NASD system, 
higher-level filesystems should make large, parallel requests 
to files striped across multiple NASD drives. As illustrated 
in Figure 8, our layered approach allows the filesystem to 
manage a “logical” object store provided by our storage 
management system called Cheops. Cheops exports the 
same object interface as the underlying NASD devices, and 
maintains the mapping of these higher-level objects to the 
objects on the individual devices. Our prototype system 
implements a Cheops client library that translates applica- 
tion requests and manages both levels of capabilities across 
multiple NASD drives. A separate Cheops storage manager 
(possibly co-located with the file manager) manages map- 
pings for striped objects and supports concurrency control 
for multi-disk accesses. The Cheops client and manager is 
less than 10,000 lines of code. 

To provide support for parallel applications, we imple- 
mented a simple parallel filesystem, NASD PFS, which 
offers the SIO low-level parallel filesystem interface 
[Corbett96] and employs Cheops as its storage management 
layer. We used MPICH for communications within our par- 
allel applications [MPI95], while Cheops uses the DCE 
RPC mechanism required by our NASD prototype. 

To evaluate the performance of Cheops, we used a parallel 
data mining system that discovers association rules in sales 

100 



www.manaraa.com

-NFS 

[3-ONFS-parallel 1 

0.0; 2 
Number40f Disks 

6 6 

Figure 9: Scaling of a parallel data mining application. The 
aggregate bandwidth computing frequent sets from 300 MB of 
sales transactions is shown. The NASD line shows the 
bandwidth of n clients reading from a single NASD PFS file 
striped across n drives and scales linearly to 45 MB/s. All NFS 
configurations show the maximum achievable bandwidth with 
the given number of disks, each twice as fast as a NASD, and up 
to 10 clients spread over two OC-3 ATM links. The comparable 
NFS line shows the performance all the clients reading from a 
single file striped across II disks on the server and bottlenecks 
near 20 MB/s. This configuration causes poor read-ahead 
performance inside the NFS server, so we add the NFS-parallel 
line where each client reads from a replica of the file on an 
independent disk through the one server. This configuration 
performs better than the single file case, but only raises the 
maximum bandwidth from NFS to 22.5 MB/s. 

transactions [Agrawal94]. The application’s goal is to dis- 
cover rules of the form “if a customer purchases milk and 
eggs, then they are also likely to purchase bread’ to be used 
for store layout or inventory decisions. It does this in several 
full scans over the data, first determining the items that 
occur most often in the transactions (the I-itemsets), then 
using this information to generate pairs of items that occur 
most often (2-itemsets) and then larger groupings (k-item- 
sets) in subsequent passes. Our parallel implementation 
avoids splitting records over 2 MB boundaries and uses a 
simple round-robin scheme to assign 2 MB chunks to cli- 
ents. Each client is implemented as four producer threads 
and a single consumer. Producer threads read data in 
5 12 KB requests (which is the stripe unit for Cheops objects 
in this configuration) and the consumer thread performs the 
frequent sets computation, maintaining a set of itemset 
counts that are combined at a single master client. This 
threading maximizes overlapping and storage utilization. 

Figure 9 shows the bandwidth scalability of the most I/O 
bound of the phases (the generation of I-itemsets) process- 
ing a 300 MB sales transaction file. A single NASD pro- 
vides 6.2 MB/s per drive and our array scales linearly up to 
45 MB/s with 8 NASD drives. 

In comparison, we also show the bandwidth achieved when 
NASD PFS fetches from a single higher-performance tradi- 
tional NFS file instead of a Cheops NASD object. The NFS 
file server is an AlphaStation 500/500 (500 MHz, 256 MB, 
Digital UNIX 4.0b) with two OC-3 ATM links (half the cli- 

ents communicate over each link), and eight Seagate 
ST34501W Cheetah disks (13.5 MB/s) attached over two 
40 MB/s Wide UltraSCSI busses. Using optimal code, this 
machine can internally read as much as 54.1 MB/s from 
these disks through the raw disk interface. We show two 
application throughput lines for this server. The line marked 
NFS-parallel shows the performance of each client reading 
from an individual file on an independent disk and achieves 
performance up to 22.5 MB/s. The results show an NFS 
server (with 35+ MB/s of network bandwidth, 54 MB/s of 
disk bandwidth and a perfect sequential access pattern on 
each disk) loses much of its potential performance to CPU 
and interface limits. In comparison, each NASD is able to 
achieve 6.2 MB/s of the raw 7.5 MB/s available from its 
underlying dual Medallists. Finally, the NFS line is the one 
most comparable to the NASD line and shows the bandwidth 
when all clients read from a single NFS file striped across 
n disks. This configuration is slower at 20.2 MB/s than 
NFS-parallel because its prefetching heuristics fail in the 
presence of multiple request streams to a single file. 

In summary, NASD PFS on Cheops delivers nearly all of 
the bandwidth of the NASD drives, while the same applica- 
tion using a powerful NFS server fails to deliver half the 
performance of the underlying Cheetah drives. 

6. ACTIVE DISKS 
Recent work in our group has focused on the logical exten- 
sion to exploiting the growing amount of on-drive computa- 
tion by providing full application-level programmability of 
the drives in what we call Active Disks [Riedel98, 
Acharaya981. This next generation of storage devices pro- 
vides an execution environment directly at individual drives 
and allows code to execute near the data and before it is 
placed on the interconnect network. This provides the capa- 
bility to customize functionality for specific data-intensive 
applications. By extending the object notion of the basic 
NASD interface to include code that provides specialized 
“methods” for accessing and operating on a particular data 
type, there is a natural way to tie computation to the data 
and scale as capacity is added to the system. NASD enables 
this type of extension functionality for the first time because 
the object-based interface provides sufficient knowledge of 
the data at the individual devices without having to resort to 
external metadata. 

We have explored data mining and multimedia applications 
for use in Active Disks. One of the applications we exam- 
ined is the frequent sets computation discussed above. In 
our Active Disk experiments, we also distribute the sales 
transaction data across a set of drives, but instead of reading 
the data across the network into a set of clients to do the 
itemset counting, the core frequent sets counting code is 
executed directly inside the individual drives. This allows us 
to take advantage of the excess computational power avail- 
able at the drives and completely eliminates the need for the 
client nodes (for this particular application). Using the same 
prototype drives discussed above and approximate Active 
Disks functionality, we achieve 45 MB/s with low-band- 

101 



www.manaraa.com

width 10 Mb/s ethernet networking and only l/3 of the hard- 
ware used in the NASD PFS tests of Figure 9. While the 
exploration of Active Disks has just begun, the potential 
value for some applications is dramatic. 

7. CONCLUSIONS 
Scalable storage bandwidth in clusters can be achieved by 
striping data over both storage devices and network links, 
provided that a switched network with sufficient bisection 
bandwidth exists. Unfortunately, the cost of the workstation 
server, network adapters, and peripheral adapters generally 
exceeds the cost of the storage devices, increasing the total 
cost by at least 80% over the cost of simply buying the stor- 
age. We have presented a promising direction for the evolu- 
tion of storage that transfers data directly on the client’s 
network and dramatically reduces this cost overhead. 

Our scalable network-attached storage is defined by four 
properties. First, it must support direct device-to-client 
transfers. Second, it must provide secure interfaces (e.g. via 
cryptography). Third, it must support asynchronous over- 
sight, whereby file managers provide clients with capabili- 
ties that allow them to issue authorized commands directly 
to devices. Fourth, devices must serve variable-length 
objects with separate attributes, rather than fixed-length 
blocks, to enable self-management and avoid the need to 
trust client operating systems. 

To demonstrate these concepts, we have described the 
design and implementation of a NASD prototype that man- 
ages disks as efficiently as a UNIX filesystem. Measure- 
ments of this prototype show that available microprocessor 
cores embedded into the ASIC of a modern disk drive 
should provide more than adequate on-drive support for 
NASD, provided there is cryptographic hardware support 
for the security functions. 

Using a simple parallel, distributed filesystem designed for 
NASD, we show that the NASD architecture can provide 
scalable bandwidth. We report our experiments with a data 
mining application for which we achieve 6.2 MB/s per cli- 
ent-drive pair in a system up to 8 drives, providing 45 MB/s 
overall. In addition, we describe how conventional distrib- 
uted filesystems (NFS and AFS) can be ported to use NASD 
with performance comparable to current server-based sys- 
tems. 

8. ACKNOWLEDGEMENTS 
We thank Mike Leis of Quantum for the Trident chip dia- 
gram of Figure 2. We thank Paul Mazaitis for his heroic 
efforts in getting our prototype environment configured and 
keeping it running. We thank Dan Stodolsky, Bill 
Courtright, Joan Digney, Greg Ganger, Tara Madhyastha, 
Todd Mowry, John Wilkes, Ted Wong, and the anonymous 
reviewers for taking their valuable time to provide us with 
comments that much improved the paper. We also thank the 
members of the NSIC working group on network-attached 
storage, especially Dave Anderson, Mike Leis, and John 
Wilkes, for many useful conversations and site visits. 
Finally, we thank all the other members of the Parallel Data 

Lab make our research possible and enjoyable. 

This research is sponsored by DARPA/ITO through DARPA 
Order D306, and issued by Indian Head Division, NSWC 
under contract N00174-96-0002. The project team is 
indebted to generous contributions from the member com- 
panies of the Parallel Data Consortium, including: Hewlett- 
Packard Laboratories, Intel, Quantum, Seagate Technology, 
Storage Technology, Wind River Systems, 3Com Corpora- 
tion, Compaq, Data GeneralZlariion, and Symbios Logic. 

9. REFERENCES 
[Acharya98] Acharaya, A. et al, Active Disks, ACM ASPLOS, 
Ott 1998. 
[AgrawalW] Agrawal, R. and Srikant, R. Fast Algorithms for 
Mining Association Rules, VLDB, Sept 1994. 
[Anderson961 Anderson, T., et al. Serverless Network File 
Systems, ACM TOCS 14(l), Feb 1996. 
[Anderson971 Anderson, J.M. et al., Continuous Profiling: 
Where Have All the Cycles Gone?, ACM SOSP, Ott 1997. 
[Anderson98a] Anderson, D. Network Attached Storage 
Research, www.nsic.org/nasd/meetings.html, March 1998. 
[Anderson98b] Anderson, D. Network Attached Storage 
Research, www.nsic.org/nasd/meetings.html, June1998. 

[Anderson98c] Anderson, D., et al. Cheating the I/O Bottle- 
neck: Network Storage with Trapeze/Myrinet, USENIX, June 
1998. 
[Baker911 Baker, M.G. et al., Measurements of a Distributed 
File System”, ACM SOSE Ott 1991. 
[Bellare Bellare, M., Canetti, R. and Krawczyk, H., Key- 
ing Hash Functions for Message Authentication, Crypt0 ‘96, 
1996. 
[Benner96] Benner, A.F., Fibre Channel: Gigabit Communi- 
cations and I/O~for Computer Networks, McGraw Hill, 1996. 

[Birrell80] Birell, A.D. and Needham, R.M., A Universal File 
Server, IEEE TSE 6 (5), Sept1980. 
[Boden95] Boden, N.J., et al., Myrinet: A Gigabit-per-Second 
Local Area Network, IEEE Micro, Feb 1995. 
[Cabrera91] Cabrera, L. and Long, D., Swift: Using Distrib- 
uted Disk Striping to Provide High I/O Data Rates, Comput- 
ing Systems 4:4, Fall 199 1. 

[Cao93] Cao, P., et al., The TickerTAIP Parallel RAID Archi- 
tecture, ACM ISCA, May 1993. 
[Corbett96] Corbett, P., et al., Proposal for a Common Parallel 
File System Programming Language, Scalable I/O Initiative 
CalTech CACR 130, Nov 1996. 
[Deering Deering, S. and Hinden, R., Internet Protocol 
Version 6 Specification, RFC 1883, Dee 1995. 
[deJonge93] deJonge, W., Kaashoek, M.F. and Hsieh. WC. 
The Logical Disk: A New Approach to Improving File Sys- 
tems, ACM SOSP, Dee 1993. 

[Dennis661 Dennis, J.B. and Van Horn, E.C., “Programming 
Semantics for Multiprogrammed Computations”, CACM 9, 3, 
1966 

102 



www.manaraa.com

[Drapeau94] Drapeau, A.L., et al., RAID-II: A High-Band- 
width Network File Server, ACM ISCA, 1994. 
[Gibson97a] Gibson, G., et al., File Server Scaling with Net- 
work-Attached Secure Disks, ACM SIGMETRICS, 
June 1997. 
[Gibson97b] Gibson, G., et al. Filesystems for Network- 
Attached Secure Disks, TR CMU-CS-97-118, July 1997. 
[Gobioff97] Gobioff, H., Gibson, G. and Tygar, D., Security 
for Network Attached Storage Devices, TR CMU-CS-97- 
185,Oct 1997. 

[Golding95] Golding, R., Shriver, E., Sullivan, T., and 
Wilkes, J., “Attribute-managed storage,” Workshop on 
Modeling and Specification of I/O, San Antonio, TX, Ott 
1995. 
[Gong891 Gong, L., A Secure Identity-Based Capability 
System IEEE Symp. on Security and Privacy, May 1989. 
[Grochowski96] Grochowski, E.G. and Hoyt, R.F., Future 
Trends in Hard Disk Drives, IEEE Trans. on Mugnetics 
32 (3), May 1996. 
[Hartman93] Hartman, J.H. and Ousterhout, J.K., The Zebra 
Striped Network File System, ACM SOSP, Dee 1993. 

[Hitz90] Hitz, D. et al., Using UNIX as One Component of 
a Lightweight Distributed Kernel for Multiprocessor File 
Servers, Winter USENIX, 1990. 
[Hitz94] Hitz, D., Lau, J. and Malcolm, M. File Systems 
Design for an NFS File Server Appliance, Winter USENIX, 
January 1994. 
[Horst95] Horst, R.W. TNet: A Reliable System Area Net- 
work, IEEE Micro, Feb 1995. 
[Howard881 Howard, J.H. et al., Scale and Performance in a 
Distributed File System, ACM TOCS 6 (l), February 1988. 

[IEEE951 IEEE P1244. “Reference Model for Open Storage 
Systems Interconnection-Mass Storage System Reference 
Model Version 5”, Sept 1995 
[Intel971 Intel Corporation, Virtual Interface (VI) Architec- 
ture, www.viurch.org, Dee 1997. 
[Karger88] Karger, P.A., “Improving Security and Perfor- 
mance for Capability Systems”, University of Cambridge 
Computer Laboratory Technical Report No. 149,Oct 1988. 
[Knudsen961 Knudsen, L. and Preneel, B., Hash functions 
based on block ciphers and quaternary codes. Advances in 
Cryptology ASIACRYPT, Nov 1996. 
[Lee961 Lee, E.K. and Thekkath, C.A., Petal: Distributed Vir- 
tual Disks, ACMASPLOS, Ott 1996. 
[Long941 Long, D.D.E., et al, Swift/RAID: A Distributed 
RAID System, Computing Systems 7,3, Summer 1994. 
IMaeda93] Maeda, C., and Bershad, B., “Protocol Service 
Decomposition for High-Performance Networking”, 14th 
ACM SOSP, Dec. 1993. 
[McKusick84] McKusick, M.K. et al., A Fast File System for 
UNIX, ACM TOCS 2, August 1984. 
[Miller881 Miller, S.W., A Reference Model for Mass Storage 
Systems, Advances in Computers 27, 1988. 

[Mitchell811 Mitchell, J. and Dion, J., A Comparison of Two 
Network-Based File Servers, ACM SOSP, Dee 1981. 
[MPI95] The MPI Forum, The Message-Passing Interface 
Standard, www.mcs.anl.gov/mpi/standard.html, May 1995. 
[Neuman94] Neuman, B.C. and Ts’o, T., Kerberos: An 
Authentication Service for Computer Networks, IEEE Com- 
munications 32,9, Sept 1994. 

[Patterson881 Patterson, D.A., et al., A Case for Redundant 
Arrays of Inexpensive Disks, ACM SZGMOD, June 1988. 

[Pricewatch www.pricewatch.com, July 1998. 

[Riedel98] Riedel, E., et al., “Active Storage for Large-Scale 
Data Mining and Multimedia” VLDB, Aug 1998. 
[Sachs941 Sachs, M.W. et al., LAN and I/O Convergence: A 
Survey of the Issues, IEEE Computer, Dee 1994. 
[Sandberg Sandberg, R. et al., Design and Implementation 
of the Sun Network Filesystem, Summer USENIX, June 1985, 
pp. 119-130. 
[Srivastava94] Srivastava, A., and Eustace, A., ATOM: A sys- 
tem for building customized program analysis tools, WRL 
Technical Report TN-41, 1994. 
[Tanenbaum86] Tanenbaum, A.S., Mullender, S.J. and van 
Renesse, R., Using Sparse Capabilities in a Distributed Sys- 
tem, Sixth Conference on Distributed Computing, 1986. 
[Thekkath97] Thekkath, C., et al., Frangipani: A Scalable 
Distributed File System, ACM SOSP, Ott 1997. 
[TPC98] Transaction Performance Council TPC-C Executive 
Summaries, URL: www. tpcorg, Mar 1998. 
[TriCore97] TriCore News Release, Siemens’ New 32-bit 
Embedded Chip Architecture Enables Next Level of Perfor- 
mance in Real-Time Electronics Design, www.tri-core.com, 
Sept 1997. 
[VanMeter Van Meter, R., Hotz, S. and Finn, G., Derived 
Virtual Devices: A Secure Distributed File System Mecha- 
nism, Fifth NASA Goddard Conference on Mass Storage Sys- 
tems and Technologies, Sep 1996. 
[VanMeter Van Meter, R., et al., VISA: Netstation’s Vir- 
tual Internet SCSI Adapter, ACMASPLOS, Ott 1998. 
[Verbauwhede87] Verbauwhede, I. et al., H. Security Consid- 
erations in the Design and Implementation of a New DES 
Chip, EUROCRYPT, 1987. 
[vonEicken95] von Eicken, T., Basu, A., Buch, V. and 
Vogels, W. U-Net: A User-Level Network Interface for Par- 
allel and Distributed Computing, ACM SOSP, Dee 1995. 
[Watson951 Watson, R., Coyne, R., The Parallel I/O Archi- 
tecture of the High-Performance Storage System (HPSS), 
14th IEEE Symposium on Mass Storage Systems, September 
1995. 
[Wilkes791 Wilkes, M.V. and Needham, R.M., The Cam- 
bridge CAP Computer and Its Operating System, 1979. 
[Wilkes921 Wilkes, J. Hamlyn - An Interface for Sender- 
based Communications, Hewlett-Packard Laboratories 
Technical Report HPL-OSR-92-13, Nov 1992. 
[Wulfi’4] Wulf, W.A. et al., “HYDRA: The Kernel of a Mul- 
tiprocessor Operating System”, CACM, 17,6, June 1974 

103 


